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Introduction (1/2): Assist human moderation of online
discussions
— “. . .”
— “Survival of the fittest would not have produced you. You are alive
because your weak blood is supported by welfare and food stamps. Please
don’t reference Darwin in your icon. Loser”
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Introduction (2/2): Approaches to semi-automated
moderation and healthier online discussions
Classification: Existing; leveraged here
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ToxicSpans task (1/3): Dataset annotation

Civil Comments
previously
labeled by
multiple
annotators

Posts with
majority toxic
annotation

Crowsourcing
annotation
(Appen) on a
random subset;
3 annotators per
post

ToxicSpans
with
ground-truth
made of the
majority offset
characters
labeled as toxic

1.2M 30K 11K 11K

———— #$@! #$@! #$@! #$@! {10, 11, 12, 13}

———————

...
...

...
...

%&+€ ———–

——— E*A♠ — E*A *A *A♠ {7, 8}

Laugier, L. (IP Paris) Presentation ACL 2022 7 / 26

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
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https://github.com/ipavlopoulos/toxic_spans


ToxicSpans task (2/3): Analysis

Inter-annotator agreement: computed with Cohen’s κ

87 randomly selected posts, labeled by 5 (instead of 3) workers: κ = 0.48�On posts (51) found toxic by a majority of annotators: κ = 0.55�On posts (31) found toxic by all annotators: κ = 0.65

Moderate agreement −→ Highly subjective task

Exploratory analysis
5K/11K posts have empty ground truth toxic span.

−→ Toxicity does not imply it is “localized”

Most posts with toxic spans include a single “dense span”.

Next slide shows explicit language
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ToxicSpans task (2/3): Analysis

(a) Most frequent toxic spans (b) Most frequent multi-word toxic spans
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ToxicSpans task (3/3): Evaluation

Appropriate F̄1 score
Ground truth: n posts, each associated with a set Yi of character offsets.
Prediction: System returning a set of character offsets Ŷi for the ith post.

F̄1 = 1
n

n∑
i=1

F i
1 with per-post F1 score: F i

1 = 2 · P i · R i

P i + R i

Precision: P i = |Ŷi ∩ Yi |
|Ŷi |

Recall: R i = |Ŷi ∩ Yi |
|Yi |
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Methods (1/2): Systems

Baselines
Random: rand
Naive: Lookup methods

hate-match from a pre-defined hateful vocabulary [1].
train-match from the ToxicSpans train set.

Strong supervision: Standard deep learning architectures
RNN: bilstm-seq
CNN: cnn-seq
BERT: bert-seq and span-bert-seq [2]

Weak (inexact) supervision: Attention-based Rationale Extraction
RNN: bilstm+are [3]
BERT: bert+are
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Methods (2/2): Weakly-supervised systems

Weak (inexact) supervision: Attention-based Rationale Extraction
RNN: bilstm+are [3]
BERT: bert+are
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Results (1/3): Quantitative analysis

F1 (%) P (%) R (%) roc auc1 (%)

Baselines
rand 7.3 5.3 25.4 N/A
train-match 41.0 39.1 48.7 N/A
hate-match 10.6 7.1 43.7 N/A

Strong supervision

bilstm-seq 58.9 59.8 58.9 N/A
cnn-seq 59.3 60.7 59.0 N/A
bert-seq 59.7 60.7 60.0 N/A
span-bert-seq 63.0 63.8 62.8 N/A

Weak supervision bilstm+are 57.7 58.4 57.3 90.9
bert+are 49.1 49.4 49.5 96.1

1of the post-level toxic classifier
Laugier, L. (IP Paris) Presentation ACL 2022 15 / 26



Results (2/3): Error analysis

Type I error (False positives)
• Not sure if “people are dumb” is the best descriptor, but you are correct
that we tend to seek out and grasp at anything that supports our beliefs
and hopes. Hence the proliferation of “fake news”, which feeds those wants.

• They can shuffle the cabinet seven ways from Sunday and it’s still a cabal
of losers.

Type II error (False negatives)
• You can stick your d**k up anyone’s butt. Why have any laws at all?
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Results (3/3): Additional training data for weakly
supervised (attention-based rationale extraction) systems

Increasing the train size of underlying post-level classifiers improves the toxic-span
detectors, almost reaching the performance of strongly-supervised systems.
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Toxic-to-Civil Transfer (1/2): Transformer-based systems
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Toxic-to-Civil Transfer (2/2): scrutinized with toxicspan
dataset and systems

Evaluation Dataset Metric cae-t5 sed-t5

Non-Parallel (NP)

acc ↑ 75.0% 52.2%
acc2 ↑ 83.4% 67.3%
ppl ↓ 5.2 11.8

self-sim ↑ 70.0% 87.9%
gm (self) ↑ 0.466 0.338

acc3 ↑ 86.7% 64.1%
acc4 ↑ 83.2% 59.5%

Parallel (P)

acc ↑ 94.3% 94.3%
acc2 ↑ 94.7% 94.3%
ppl ↓ 9.1 38.3

ref-sim ↑ 27.6% 65.3%
self-sim ↑ 32.6% 65.6%
gm (ref) ↑ 0.306 0.252
gm (self) ↑ 0.323 0.252

acc3 ↑ 98.8% 94.3%
acc4 ↑ 94.7% 91.9%

acc ↑ 92.9% 65.6%
acc2 ↑ 92.5% 63.7%
ppl ↓ 7.2 24.9

self-sim ↑ 34.5% 82.1%
gm (self) ↑ 0.355 0.279

acc3 ↑ 96.9% 62.0%

ToxicSpans

acc4 ↑ 92.0% 54.7%

The models often successfully
detect toxic spans and try to
rephrase them
Humans did rephrase almost
all cases of explicit toxicity in
the toxic posts they were given

Laugier, L. (IP Paris) Presentation ACL 2022 20 / 26



Contents

1 Introduction

2 ToxicSpans task

3 Method

4 Results

5 Analysis of Toxic-to-Civil Transfer

6 Conclusion

Laugier, L. (IP Paris) Presentation ACL 2022 21 / 26



Conclusion

ToxicSpan introduces the first large-scale dataset annotated at the
span level.
span-bert-seq achieves best results on this new task.
Weak supervision + data augmentation catches up with some
strongly-supervised span detectors.
Part of the toxicspan dataset has been used in the SemEval-2021
Task 5.
ToxicSpan helps to evaluate automatic and human toxic-to-civil
transfer.

Future work
Remove the toxicity assumption by adding a component detecting
whether a post is toxic or not
Leverage weak supervision and apply toxicspan detection in
low-resource languages
Laugier, L. (IP Paris) Presentation ACL 2022 22 / 26
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